Pytorch命令记录
模型训练 #
随机种子设置 #
#设置随机种子
import random
torch.backends.cudnn.deterministic = True#将cudnn框架中的随机数生成器设为确定性模式
torch.backends.cudnn.benchmark = False#关闭CuDNN框架的自动寻找最优卷积算法的功能,以避免不同的算法对结果产生影响
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
GPU多卡训练 #
from torch.nn.parallel import DataParallel
device = torch.device('cuda:0' if torch.cuda.device_count() > 0 else 'cpu')
model = ResNet18().to(device)
model = DataParallel(model, device_ids=[0, 1]) # 额外加这一行
print(model)
预训练模型加载 #
model.load_state_dict(torch.load('model.pth'))
或者
model = torch.load('model.pth')
数据预处理 #
图像增强 #
class Cutout(object):
"""
Args:
n_holes (int): Number of patches to cut out of each image.
length (int): The length (in pixels) of each square patch.
"""
def __init__(self, n_holes, length):
self.n_holes = n_holes
self.length = length
def __call__(self, img):
h = img.size(1)
w = img.size(2)
mask = np.ones((h, w), np.float32)
for n in range(self.n_holes):
# (x,y)表示方形补丁的中心位置
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img = img * mask
return img
transform_train = transforms.Compose([
transforms.Resize(40),
transforms.RandomResizedCrop(32,scale=(0.64,1.0),ratio=(1.0,1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4823, 0.4465],[0.2023,0.1920,0.2210]), # 3通道彩色图像才需要正则化
Cutout(n_holes=1, length=16)
])
transform_test = transforms.Compose([
#transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4823, 0.4465],[0.2023,0.1920,0.2210])
])
数据集 #
划分数据集 #
train_loader, valid_loader, test_loader = split_data_loader(train_data, test_data)
from torch.utils.data.sampler import SubsetRandomSampler
def split_data_loader(train_data, test_data, batch_size=128, num_workers=2, vaild_size=0.2):
vaild_size = 0.2
batch_size = 128
num_workers = 2
# obtain training indices that will be used for validation
num_train = len(train_data)
indices = list(range(num_train))
# random indices
np.random.shuffle(indices)
# the ratio of split
split = int(np.floor(vaild_size * num_train))
# divide data to radin_data and valid_data
train_idx, valid_idx = indices[split:], indices[:split]
# define samplers for obtaining training and validation batches
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
# prepare data loaders (combine dataset and sampler)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,sampler=train_sampler, num_workers=num_workers)
valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,sampler=valid_sampler, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size,num_workers=num_workers)
return train_loader, valid_loader, test_loader
模型训练 #
训练函数(周期更新学习率) #
训练函数(周期更新学习率) #
train_list,valid_list, acc_list = train(model, train_loader,valid_loader, num_epochs=100, lr=0.01, wd=5e-4, devices=device, lr_period=30, lr_decay=0.5)
from tqdm import tqdm #进度条
# 训练函数参数分别是模型、训练集、验证集、训练轮数、学习率、权重衰减、设备、学习率调整周期、学习率衰减率
def train(model, train_loader,valid_loader, num_epochs, lr, wd, devices, lr_period, lr_decay):
train_list = [] # 记录训练集的loss
valid_list = [] # 记录验证集的loss
acc_list = [] # 记录验证集的准确率
valid_loss_min = np.Inf # 记录最小的验证集loss
criterion = nn.CrossEntropyLoss().to(device) # 使用交叉熵损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9,weight_decay=wd) # 使用SGD优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, lr_period, lr_decay) # 动态调整学习率
for epoch in tqdm(range(1,num_epochs+1)):
# 保存训练集和验证集的loss
train_loss = 0.0
valid_loss = 0.0
total_sample = 0
right_sample = 0
#训练模式
model.train()
for i, (data, label) in enumerate(train_loader):
data, label = data.to(devices), label.to(devices)
optimizer.zero_grad() # 梯度清零
output = model(data).to(devices) # 前向传播
loss = criterion(output, label.long()) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
train_loss += loss.item() * data.size(0) # 更新累计损失
scheduler.step() # 更新学习率
# 验证模式
model.eval()
for data, label in valid_loader:
data, label = data.to(devices), label.to(devices)
output = model(data).to(devices) # 前向传播
loss = criterion(output, label.long()) # 计算损失
valid_loss += loss.item() * data.size(0) # 更新累计损失
_, pred = torch.max(output, 1) # 预测类别
correct_tensor = pred.eq(label.data.view_as(pred)) # 判断预测类别与实际类别是否相等
correct = np.squeeze(correct_tensor.cpu().numpy()) # 将tensor转为numpy
total_sample += label.size(0) # 更新累计样本数
right_sample += correct.sum().item() # 更新正确样本数
# 计算平均损失
train_loss = train_loss/len(train_loader.sampler)
valid_loss = valid_loss/len(valid_loader.sampler)
acc = right_sample / total_sample
train_list.append(train_loss)
valid_list.append(valid_loss)
acc_list.append(acc)
print("Epoch: {} 当前lr为:{}".format(epoch,optimizer.param_groups[0]['lr'])) # 显示当前学习率
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(epoch, train_loss, valid_loss))# 显示训练集与验证集的损失函数
print("Epoch:", epoch, "valid_acc:", acc) # 显示验证集的准确率
# 如果验证集的损失函数减少了,就保存模型
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(valid_loss_min,valid_loss))
torch.save(model.state_dict(), 'model.pth')
valid_loss_min = valid_loss
return model,train_list,valid_list, acc_list # 返回模型和训练集、验证集的损失函数纪录
训练函数(根据验证集更新学习率) #
10次loss
没下降则更新学习率lr
wandb训练函数(周期更新学习率) #
train_list,valid_list,acc_list = train(model,'Project_Name',train_loader,valid_loader, num_epochs=100, lr=0.01, wd=0.0001, devices=device, lr_period=10, lr_decay=0.5)
# 训练函数参数分别是模型、wandb记录名称、训练集、验证集、训练轮数、学习率、权重衰减、设备、学习率调整周期、学习率衰减率
def train(model,log_name,train_loader,valid_loader, num_epochs, lr, wd, devices, lr_period, lr_decay):
# 使用wandb跟踪训练过程,需登录,否则随机分配一个网址,登陆后获取密钥,在终端执行wandb login,输入密钥
experiment = wandb.init(project=log_name, resume='allow', anonymous='must')
train_list = [] # 记录训练集的loss
valid_list = [] # 记录验证集的loss
acc_list = [] # 记录验证集的准确率
valid_loss_min = np.Inf # 记录最小的验证集loss
criterion = nn.CrossEntropyLoss().to(device) # 使用交叉熵损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9,weight_decay=wd) # 使用SGD优化器
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, lr_period, lr_decay) # 动态调整学习率
for epoch in tqdm(range(1,num_epochs+1)):
# 保存训练集和验证集的loss
train_loss = 0.0
valid_loss = 0.0
total_sample = 0
right_sample = 0
#训练模式
model.train()
for i, (data, label) in enumerate(train_loader):
data, label = data.to(devices), label.to(devices)
optimizer.zero_grad() # 梯度清零
output = model(data).to(devices) # 前向传播
loss = criterion(output, label.long()) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
train_loss += loss.item() * data.size(0) # 更新累计损失
scheduler.step() # 更新学习率
# 验证模式
model.eval()
for data, label in valid_loader:
data, label = data.to(devices), label.to(devices)
output = model(data).to(devices) # 前向传播
loss = criterion(output, label.long()) # 计算损失
valid_loss += loss.item() * data.size(0) # 更新累计损失
_, pred = torch.max(output, 1) # 预测类别
correct_tensor = pred.eq(label.data.view_as(pred)) # 判断预测类别与实际类别是否相等
correct = np.squeeze(correct_tensor.cpu().numpy()) # 将tensor转为numpy
total_sample += label.size(0) # 更新累计样本数
right_sample += correct.sum().item() # 更新正确样本数
# 计算平均损失
train_loss = train_loss/len(train_loader.sampler)
valid_loss = valid_loss/len(valid_loader.sampler)
acc = right_sample / total_sample
train_list.append(train_loss)
valid_list.append(valid_loss)
acc_list.append(acc)
experiment.log({
'valid_acc': acc,
'train_loss': train_loss,
'valid_loss':valid_loss,
'lr': optimizer.param_groups[0]['lr']
})
# 如果验证集的损失函数减少了,就保存模型
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(valid_loss_min,valid_loss))
torch.save(model.state_dict(), 'model.pth')
valid_loss_min = valid_loss
return train_list,valid_list, acc_list # 返回模型和训练集、验证集的损失函数纪录
测试部分 #
测试函数 #
def test(model,test_loader):
total_sample = 0
right_sample = 0
model.eval() # 验证模型
for data, target in test_loader:
data = data.to(device)
target = target.to(device)
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data).to(device)
# convert output probabilities to predicted class(将输出概率转换为预测类)
_, pred = torch.max(output, 1)
# compare predictions to true label(将预测与真实标签进行比较)
correct_tensor = pred.eq(target.data.view_as(pred))
# correct = np.squeeze(correct_tensor.to(device).numpy())
total_sample += batch_size
right_sample += correct_tensor.sum().item()
acc = right_sample / total_sample
return str(acc)+"%"
单张图片测试 #
model.eval()
img = Image.open('/kaggle/working/train/100.png')
img = transforms.ToTensor()(img)
img = img.to(device)
label = model(img).argmax().item() #返回指定维度最大值的序号
class_name = {0:'frog', 1:'truck', 2:'deer', 3:'automobile', 4:'bird', 5:'horse', 6:'ship', 7:'cat', 8:'dog', 9:'airplane'}
print("预测值是:%s,真实值是:%s" % (class_name[label], img_list[100][1]))
Matplotlib #
一图绘制多条折线 #
plt.title('train_loss & valid_loss & acc')
plt.plot(train_list, label='train_loss')
plt.plot(valid_list, label='valid_loss')
plt.plot(acc_list, label='acc')
plt.legend()
plt.show()
NLP系列 #
词频统计 #
# 导入BOW(词袋模型)
from sklearn.feature_extraction.text import CountVectorizer
vector = CountVectorizer().fit(train['text'])
train_vector = vector.transform(train['text'])
test_vector = vector.transform(test['text'])
Gradio系列 #
Gradio部署图片处理 #
import gradio as gr
def image_classifier(inp):
return inp
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="text")
demo.launch()
常用网络模型 #
ResNet #
device = 'cuda' if torch.cuda.is_available() else 'cpu'
n_class = 7
model = ResNet18()
"""
ResNet18网络的7x7降采样卷积和池化操作容易丢失一部分信息,
所以在实验中我们将7x7的降采样层和最大池化层去掉,替换为一个3x3的降采样卷积,
同时减小该卷积层的步长和填充大小
"""
# 处理 32x32 大小的3通道彩色图片
model.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
model.fc = torch.nn.Linear(512, n_class) # 将最后的全连接层改掉
model = model.to(device)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
#self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
#x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def forward(self, x):
return self._forward_impl(x)
def _resnet(block, layers, **kwargs):
model = ResNet(block, layers, **kwargs)
return model
def ResNet18(**kwargs):
return _resnet(BasicBlock, [2, 2, 2, 2],**kwargs)
def ResNet34(**kwargs):
return _resnet(BasicBlock, [3, 4, 6, 3],**kwargs)
def ResNet50(**kwargs):
return _resnet(Bottleneck, [3, 4, 6, 3],**kwargs)
def ResNet101(**kwargs):
return _resnet(Bottleneck, [3, 4, 23, 3],**kwargs)
def ResNet152(**kwargs):
return _resnet(Bottleneck, [3, 8, 36, 3],**kwargs)
Q&A #
将numpy.ndarray
转为PIL.Image.Image
#
请注意,numpy数组的dtype必须为uint8,因为PIL只能处理8位无符号整数。如果您的numpy数组的dtype不是uint8,请使用numpy.astype()将其转换为uint8。
import numpy as np
from PIL import Image
# 创建一个 numpy 数组
arr = np.array([[255, 0, 0], [0, 255, 0], [0, 0, 255]], dtype=np.uint8)
# 将 numpy 数组转换为 PIL 图像
img = Image.fromarray(arr)
# 显示图像
img.show()
Cloab自动断开 #
function ConnectButton(){
console.log("Connect pushed");
document.querySelector("#top-toolbar > colab-connect-button").shadowRoot.querySelector("#connect").click()
}
setInterval(ConnectButton,60000);
Wandb #
!pip install wandb
import wandb
wandb.login()
# 使用wandb跟踪训练过程,需登录,否则随机分配一个网址,登陆后获取密钥,在终端执行wandb login,输入密钥
experiment = wandb.init(project="test", resume='allow', anonymous='must')
experiment.log({
'train loss': loss_sum / len(train_loader),
'valide loss': epoch,
})